Experiments on feedback control of multiple resistive wall modes comparing different active coil arrays and sensor types
نویسندگان
چکیده
Experiments have been carried out on the EXTRAP T2R reversed-field pinch device to study several important issues related to feedback control of resistive wall modes (RWMs). The feedback system includes a sensor coil array, a feedback controller implementing a feedback law and an active coil array. The issues include 1) effects of sideband harmonics produced by the feedback system, 2) the form of the controller and the feedback law, 3) feedback system stability, 4) selection of the sensor coil configuration and 5) effects of field errors on the feedback system. Side band harmonics are produced by the feedback system because the active saddle coil array consists of discrete coils. The presence of side bands can couple modes thus preventing simultaneous stabilisation of the coupled modes. The side band effect sets requirements for the minimum number of active coils in the array in both the poloidal and toroidal directions. Recent experiments using the intelligent shell concept with proportional-integral-derivative controller action have achieved complete simultaneous stabilisation of all RWMs modes when the requirements are satisfied. In addition to the intelligent shell concept, preliminary experiments have been performed to test the fake rotating shell concept. For this concept, the sensor coil array is shifted in phase relative to the active coil array thus a detected harmonic is induced to rotate by the active coil-produced control field. Under the condition that the phase shift is less than a quarter-wave length of the mode, mode suppression can be achieved. Feedback using a controller incorporating individual mode control has also been tested. This has enabled the first feedback experiments using a sensor array measuring the toroidal field component to be carried out. For this concept, an array consisting of localised toroidal field sensor coils is used. Mode suppression has been successfully accomplished. However pick-up of high order field error harmonics due to the small size of the sensor coils introduces an adverse signal to background ratio as compared to the case with the radial field sensor coil array. Optimal suppression is achieved at the predicted complex feedback gain phase. Mode rotation is induced at other complex gain phases, in agreement with modelling. In other experiments, linear models have been used to evaluate the effect of resonant field errors on mode growth. The thin-wall model is satisfactory for describing the response of the plasma and resistive-shell system and resonant field error amplification is observed.
منابع مشابه
Modeling of active control of external magnetohydrodynamic instabilities
A general circuit formulation of resistive wall mode ~RWM! feedback stabilization developed by Boozer @Phys. Plasmas 5, 3350 ~1998!# has been used as the basis for the VALEN computer code that calculates the performance of an active control system in arbitrary geometry. The code uses a finite element representation of a thin shell structure in an integral formulation to model arbitrary conducti...
متن کاملModeling of Feedback and Rotation Stabilization of the Resistive Wall Mode in Tokamaks
This paper describes the modeling of the feedback control and rotational stabilization of the resistive wall mode (RWM) in tokamaks. A normal mode theory for the feedback stabilization of the RWM has been developed for an ideal plasma with no toroidal rotation. This theory has been numerically implemented for general tokamak geometry and applied to the DIII-D tokamak. It is found that feedback ...
متن کاملActive Feedback Control of the Wall Stabilized External Kink Mode*
Active feedback control has been used in the HBT-EP tokamak to control the growth of the n=1 resistive wall mode. These experiments were carried out using a set of thin stainless-steel wall segments with magnetic diffusion time of ~0.4 ms positioned near the plasma boundary. In plasmas that would normally exhibit a strong ideal n = 1 external kink mode without a nearby conducting wall, the resi...
متن کاملCompact and Efficient Active Vibro-acoustic Control of a Smart Plate Structure
An effective wide band active control law through one kind of the Dynamic Vibration Absorber (DVA) is proposed and studied in this paper. With the help of mechanical impedance method, active DVA control law is formulated based on the passive mechanical model. The electrical DVA can generate multi-mode active damping to the structure. The host structure is an aluminum plate and acceleration sign...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006